
HIGH PERFORMANCE STRUCTURAL SENSORS

	High- Performance NRL Fiber Sensor	Typical NRL Fiber Sensor	Conventional Resistance Strain Gage Sensor
Resolution (με)	0.004	0.4	10, 100
Dynamic Static	~0.001 1	0.1 1	10–100 10–100
Dynamic range (dB)	114	94	~74
Bandwidth (Hz)	~0-20,000	~0–360	Variable
Multiplexing ability	Excellent	Excellent	Poor
Drift compensation	Yes	Yes	Sometimes

The Naval Research Laboratory has developed a new, high-performance structural monitoring system based on interrogation of fiber optic Bragg grating sensors. The system uses a scanning Fabry-Perot filter for demultiplexing, a Mach-Zehnder interferometer for high-resolution grating interrogation, and a unique, all-passive algorithm to interrogate a 3×3 coupler at the interferometer output for strain conversion. The system is capable of demultiplexing an array of Bragg grating sensors with the following performance characteristics:

- ❖ 10-9 strain resolution (~1-cm gage length)
- Frequency bandwidth from DC to several kilohertz
- Temperature compensation
- 114 dB dynamic range
- High multiplexibility

The system is ideally suited for use on a wide variety of structural platforms, including:

- Civil structures (bridges, buildings, dams)
- Aircraft and hydrocraft platforms
- Space vehicles
- Industrial equipment

The high quality data obtained from these systems has supported a number of structural applications, such as:

- Structural health monitoring
- Structural performance charting
- Usage statistics
- Loading history
- Adaptive structure development

Licenses are available to companies with commercial interest.

Point of Contact

Naval Research Laboratory 4555 Overlook Avenue, SW • Washington, DC 20375-5320

http://labwide14.nrl.navy.mil/techtransfer/

Dr. Catherine Cotell • Head, Technology Transfer Office • (202) 767-7230